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WKB Approximation for a 
Quarkonium Equation 

Andr6  P e s c h  1 

Received December 6, 1992 

A fourth-order differential equation recently proposed for describing quarkonia 
is studied. The eigenvalue spectrum is self-similar. A WKB approximation 
reproduces the spectrum and the so-called magic numbers which characterize 
the self-similarity. 

1. DERIVATION 

The common approach to ensure confinement for describing non- 
relativistic quarkonia is a funnel-like potential. The underlying assumption 
is the validity of Schr6dinger mechanics for quarkonia. However, other 
approaches are possible. Becker et  al. (1991) sketch an ansatz which will be 
now developed in a simple way. 

Consider the SchrSdinger equation 

[ T + V - E ]  I ~ } = 0  (1) 

We modify this equation as simply as possible to build in confinement, but 
not by an additive potential. 

The demand for simplicity obliges us to introduce further additive 
terms that admit only solutions describing bound states and never free or 
scattering states. Therefore the kinetic energy ( T )  should never be equal 
to the total energy E, i.e., (T}  vaE. Free and scattering states should be 
suppressed by a term with denominator ( T } -  E. If one writes the equa- 
tion in this manner, the equation is not solvable exactly, but iterativety, 
because a solution IO} implies calculation of (T ) .  But free states should 
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not be possible if one uses the operator T instead of the expectation value 
( T ) ,  whatever this should mean. 

If the denominator has the dimension of an energy, the numerator has 
the dimension of a squared energy. First one should introduce a mass scale 
t/ in the numerator, so one obtains the Schr6dinger equation by switching 
off t/, and otherwise t/ensures confinement. 

Therefore there must be another energy quantity in the numerator. 
The physical system the quark-antiquark bound state--can be described 
by two quantities of dimension energy: the binding potential V and the 
mass scale r/ ensuring confinement. For  generality we admit both 
possibilities. One does not known the mixture of the two terms. The 
general equation with built-in confinement is 

I 1 V _ E  l l o ) = 0  (2) T+ V+ (A.) 2 y-y--/+ (B.) T-------E 

with mixture parameters A and B. Choosing A 2 + B  2= 1 and 
-B/A = tan q~ with phase ~0, one obtains 

t/2cos2q~ Vt/sin~o E] 10)=0 (3) 
T+ V+ T - ~  T - E  

To solve this quarkonium equation one reformulates it as 

[(T-E)(T+V-E)-Vtlsinq~+rl2cos2q~] I O ) = O  (4) 

or, with an additive function 1;(), 

Iz) = ,7 I0.) (5) 
T - E - q  sin ~o 

as  

(T+ V-E+q  sin ~p)I~p) + q  [Z) = 0  

( T - E - q  sin ~ o ) I z ) - q  1r = 0  
(6) 

Free or scattering states containing always a free part are explicitly 
inadmissible. The function IX) satisfies the equation 

[(T+ V-E)(T-E)-Vtlsin~o+tl2cosZ ~o] lz)=O (7) 

It can be shown that the differential operator for [Z) is adjoint to the 
operator for IO). Further interpretation can be found in Becker etal. 
(1991). 
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2. T H E O R E M S  

For the quarkonium equation (3) one can easily derive the Hellmann- 
Feynman theorem and the following lemma in the norm (~b I ~ )  = 1: 

0E _ 1 [/~_~ (T+ p))  + (Z i i/s) 1 &/___2_2 
0~ 1--  ( Z ] Z )  , tl aa 

( rl 2 OT)  grl sin ~0] 
- + ( 1 +  ( z l z ) ) - -  ( s )  ( T -  E - -  q sin q~ )2 -~a ~, 0o~ 

with the notation ( . ) ,  for (ffl" I~b), etc. 
A lemma in the norm ( Z [ Z ) =  1 can be calculated analogously. Note 

that for ( $ 1 ~ ) =  (ZIZ)  the derivation of the energy is singular for any 
parameter. For ~ =q~ one obtains in the norm ( 1 ) ,  = 1 

8E 1 + < z l z )  
8~ 1 -  ( z l x )  r# c~ 4~ 

= r/cos q~ + (?(t/3) (9) 

Integrating gives 

For a = q  

and in (1 )x  = 1 

E =  E(q~ = 0) + t/sin r + (90/3) (lo) 

/ ( /+ 1) 
5~ e -  ~9 s i n  ~ ~ p2  

l ( l+ 1) 
~ . = e + , g s i n ~ p -  p2 

~E - 2 ( ~ 9 1 Z ) - ( 1  + (~PI~9)) sin (p 
(12) 

& / -  1 - ( ~ l ~ )  

In the following we consider the equation with the Coulomb potential 
V = - 2 / r  with coupling constant 2 and distance r, reducing the number of 
variables by the introduction of dimensionless parameters (Quigg and 
Rosner, 1979). For rn as reduced mass, i.e., double quark mass, 

E t/ 
O = - -  p = rm2 (13) 

g --  m,,~2, m ~  2'  

u as the radial function for ~, v as the radial function for Z, and the 
abbreviations 

v(p), 

(14) 

0E 2(~PIz) + (1 + (XlZ) )  sin (p 
- - =  (11) 
& 1 - < z f z >  
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the quarkonium equation (6) takes the form 

u"= - ~ u u  + Ov 
(15) 

v " =  - ~ v - ~ u  

Multiplying to the first equation pqu' with q ~> -21, integrating this, and 
denoting the integrals 

;o ;o F 2 ( F ) f  = dp :f , ( F ) f g  = dp Ffg (16) 

with f, g, and F as any functions, we obtain 

(pq)., . , ,  = - ( p q ~ u ) . u ,  + O(pq)u,v (17) 

Further calculation [-parallel to Quigg and Rosner (1979)] turns the 
equation into 

[-pqu '2 -~- Dqo~u u2 -~- 2 p q v v  " + pqo~v#O 2 - -  q p q  l ug '  

1 r 1 + �89 - 1) pq-Zu2 -- pqv '2 + qpq- vv - ~ q ( q -  1) pq-2v2]p=o 

= - 2 q ( p q - a L P u ) -  ( p q S ~ ' ) u + 2 q ( p  q x~.~v) v 

- (Pq~'~)v+ (Pq-34l(  l+ 1 ) )~+4qO(P q ~)u~ 

- - � 8 9 1 7 7 1 8 9  (18) 

This equation yields many theorems. For example, the virial theorem: 
Setting q = 1,  we obtain 

1 ( d V )  = ( E + ~ / s i n 0 ) ( X t X ) + ~ / ( X [ ~ )  (19) 

and therefore for potentials with V ( r ) ~  r k 

k 
( T ) v , - ~  ( V )  , = ( E  + rl sin q~ ) ( z l z )  + rl(zltp ) (20) 

If we compare the expectation values of the kinetic energy using the virial 
theorem and the quarkonium equation, we find that the energy is given by 

E -  (l+k/2)(V)*+rlsinq~ (21) 
( 1 ) , - ( 1 ) ~  
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The cri t ical  po in t  is for ( ~ ' 1 0 )  = ( Z I Z ) .  If the energy is to be finite, the 
n u m e r a t o r  mus t  vanish. The  cri t ical  mass  scale is therefore 

(1 + k / 2 ) ( V ) ,  (22) 
~/c= 2((q~lz) + sin ~o) 

F o r  a C o u l o m b  poten t ia l  this equa t ion  reads  

2( r  1)~, (23) 
r/c - 4((~& I Z )  + sin ~o) 

3. N U M E R I C A L  R E S U L T S  

F igure  1 shows the behav io r  of the g r o u n d  state for var iable  phase  ~p 
and  mass  scale 9. F o r  small  0 one can recognize the sin q~ dependence  of 
the energy e. 

The self-similar spec t rum first explored  by  R. Rosenfelder  is shown in 
Fig. 2. No te  that  the states with n = l +  1 are  dis t inguished.  A self-similar 
s t ructure  is bui l t  by the eigenvalues for cons tan t  I: Each eigenvalue funct ion 
for a pr inc ipa l  q u a n t u m  number  n is comple te ly  enveloped by  every eigen- 
value funct ion with lower  n. 

Observ ing  the S-states  for ~p = 0 ~ one can t ransform each funct ion 
with 0 = 4n2~ and  ~ = 4nZe,,. F o r  higher  n all curves are app rox ima te ly  

equal.  

Q 
0 

- 8 0  70 - 6 0  - 5 0  - 4 0  - 3 0  - 2 0  - 1 0  0 

- 8 0  - 7 0  - 6 0  - 5 0  ~ 4 0  - 3 0  20 
( ~ = 0...3 (o.1))  

- 1 0  0 

Fig. !. Dimensionless energy e as a function of phase ~p and mass scale O for the ground 
state. The curve for 0 = 0 is the straight line e = -0.25. 
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Fig. 2. 

energy  r 

- 0 . 3  - 0 . 2  - 0 . 1  0 . 0  0 . 1  0 . 2  
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k~- co 

-o .s  -o .2  -o.1 o.o o'.1 oi; 

Dimens ion le s s  energy  s as a funct ion of mass  scale ~9 at q ~ = 0  ~ For  fixed n, the 
r ightmost  curve  corresponds  to the largest  l value,  l =  n - 1. 

p, 

e~ 

The limiting value for increasing n should be 0c ~-0.6494).650 and 
~c -~ 0.375, evaluating the numerically determined values. The plot proving 
the self-similarity is shown in Fig. 3. This self-similarity holds practically for 
every n with the exception of the ground state, which has the critical mass 
scale 0c ~ 0.872. 

r 
o - 1 . 0  - 0 . 5  0 . 0  o 

o 

O 

II 
% 

-~0 - ;~  00 
Fig. 3. D imens ion le s s  energy [ as a funct ion of  mass  scale 0 at q~ = 0 ~ for fixed l =  0. The  

r ightmost  curve  corresponds  to the ground  state, n = 1. 
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integrals in the norm < u [ u >  = 1 for the ground state as a function of mass Fig. 4. Overlap 
scale 0 at q~ = 0 ~ for the ground state, n = 1, l = 0. The lowest curve for small 0 corresponds 
to the integral <vl v >. 

Note  that these values are dimensionless, determined only by the 
assumptions for integrability of  the solution. Having calculated the curves 
for an infinite number of solutions, we can consider any enlargement of the 
spectrum and we would always see the same structure. Above the critical 
point the self-similarity is slowly switched off. 

There exists a simple way to determine the critical point using the 
theorems developed above. Figure 4 illustrates an example. The point is 
critical if (vlv)=(ulu),  which is easy to realize for the numerically 
determined values. 

4. WKB A P P R O X I M A T I O N  

For a W K B  approximation we can use the quarkonium equation in u 
or the adjoint in v. It is easier to recognize which terms of the adjoint 
equation we have to give a power in h. Therefore we take the adjoint for 
the equation with vanishing momentum l =  0 and Coulomb potential 

d 4  d 2 ] 
0 =  h4~p4 +h2(p-l + Ze)-~p2 + p-l(e +Osin(p)+e2 +O2cos2 (p v(p) (24) 

and the WKB Ansatz 

v(p)=vosin(~-~) (25) 

In the dominant power we obtain 

0 = S '4 - (p - ~ + 2e) S ,2  -~- io - 1(•  ..~ ~ sin ~o) + ~2 + ~2 cos 2 ~0 (26) 
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This equation of fourth order has the solutions 

St = _}._ I, ~ 1 L~ S~ ~ )  1/2] 1/2 + ~ _ +  ( + - , ~ 2  cos~ q, - . (27) 

The classical substitute potential can be easily constructed from the 
quadratic equation in C for a quarkonium equation in classical mechanics 
following from 

and 

~]2 COS 2 q) V/~ sin ~o 
C - - -  (28) 

T - E  T - E  

T - E =  - ( V + C )  (29) 

Fliigge (1971) and Migdal (1977) provide approaches in which the 
exact eigenvalue spectra are calculated for the Schr6dinger Coulomb case. 
Migdal (1977) points out how to handle the case l =  0 without the trick of 
supplementing the equation with the term (4p2) -1 which must not be 
obvious for l = 0. But the problem is to give the right quantization condi- 
tion for that approach. Migdal (1977) considers an asymptotic expression 
of the exact function for large n to derive the condition 

fo -1/~ dp S'(p) = nzr (30) 

This quantization condition has the clear significance that the WKB 
function vanishes at p = 0  and at the turning point pw= -1/e. It is easy to 
prove that another quantization condition than the above does not give the 
exact Coulomb spectrum if n is identified as principal quantum number. 

In the following we will make a WKB approximation for the case e < 0 
(which is the lower part of the self-similar spectrum) and l -q~ = 0. 

Solution of the turning point condition gives p~-- -e/(e2 + ~92) for Pw 
as turning point. The function S' is only real for e < - 0  for all p ~< -Pw- 
Choosing the quantization condition, we take the analogous condition to 
equation (30), 

- ~/(e2 + ,9 2) 
dp S'(p)=nrc (31) 

"0 

We do not prove this ansatz, but we motivate the following conditions: 

1. The WKB function vanishes at both margin points p = 0  and 

P=Pw. 
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2. One of the remarkable results of the numerical solution is the self- 
similarity in the higher S-states. If we are to find this in the WKB 
approximation, we must choose the condition in this manner. Since the 
integral in equation (31) does not depend on the quantum number, but is 
a function of the parameters e and 0, it gives only self-similarity in the 
transformation for the variables ~ and 0 if (a) the integral is proportional 
to 1 / ( -e )  1/2 and a function F, and (b) this function F is only a function of 
the variable ~9/e. 

If both conditions are satisfied, the WKB spectrum is self-similar. 
We calculate the integral 

f0 ~,/{,:2+a2} [ 1 ( 1 )  /2]1/2 dp ~+~p+ ~p2--O 2 =I (32) 

with ~ < -O~<0 .  The transformation x=2Op and introduction of the 
variable | = 0/[e] = -0 / e  gives 

1=(--e)1/2"-2'%/(~2+'92) I (1 (1 /1/2tllo 
- - 2 0  Jo dp - l + 0  + ~7~-1 (33) 

With a trick first found, so far as I know, by M. Stingl, we introduce the 
variable u, 

u . . . .  1 ( 3 4 )  
X 

and use the familiar properties 

2u 1 1 ( ~  5 )1/2 
. . . .  + - 1  X--I+u2'  U X 

Partial integration, partial fraction expansion 

(35) 

1 i i 
l + y 4 = 2 ( y 2 + i )  2 0  , 2 - i )  (36) 

for y =  x/u, and use of the well-known primitive (Gr6bner and Hofreiter, 
1975) 

1 
f dx (c + x2)(a -- X2) 1/2 

1 x(a + c) 1/2 
arctan (37) 

, , /7 (a + c) 1'2 (ca + cx2) ','2 

9 0 2  ~32"7  - I I 
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lead to the equation 

1 ( y ( |  in 
2 0 ( - - e )  1/2 I =  i| ( - - i O - -  1) 1/2 arctan ( - - iO + iy2)1/2/ 

1 { y(| 'n )]"/g 
+ ( i |  1) in arctan \( iO- iy=)'/:]Jo 

[1 + (1 -t- 02)' /2]  1/: 
= |  zr x/2(1 "~- O 2) 1/2 

Evaluating the quantization condition gives 

(38) 

1 1 
c -  8n2 1 + 0 2  [1 + (1 +02)1/2 ] (39) 

The eigenvalues are self-similar and have the obvious property of 
reproducing the Schr6dinger Coulomb values for | ~ 0. The equation can 
be properly applied only for 0 ~< | ~< 1 and negative energies. Since the 
error of a WKB approximation is of order ( n 2 ~  2) i (Migdal, 1977) a 
WKB approximation is only appropriate for large n. 

Figure 5 illustrates the dimensionless parameter e as a function of 
mass scale | Comparing with the numerical values, we conclude that the 
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Fig. ft. WKB-approximate and numerically determined energy e as a function of mass scale 
O at ~0 = 0 for l =  0. The dashed lines correspond to the numerically determined values. 
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WKB function is a good approximation for | > 1 with the exception of the 
ground state. For larger n the approximation is more appropriate. 

It follows that 

1 
O-~8n 2 for e--,O, |  (40) 

We can expand for small O, 

1 
e = - 4n---5_ + 3n2~92 + . . .  (41) 

which can be found in a perturbation calculation of the exact quarkonium 
equation, too. 

Since for the critical point | 

m 

C| | 
(42) 

evaluation of the WKB formula gives 

| = xfl3 

and therefore 

(43) 

3 
~c-  8 -  0.375 (44) 

3 
0 , . :  "~-  -~0.6495191 (45) 

8 

These values are exactly the numerically determined ones, although the 
WKB formula should not be applied at the critical point. But the magic 
number 0c= (3 xf3)/8 characterizes the spectrum of the quarkonium 
Coulomb equation for the S-states. 

5. CONCLUSIONS 

The property of self-similarity is not restricted to chaotic behavior. 
The spectrum of a non-self-adjoint differential operator can have the 
self-similarity quality, too. But the structure has integer and nonfractal 
dimension. The self-similar structure can be simply characterized by magic 
numbers, similar to the well-known Feigenbaum structure. 

The above approach has the advantage that the real spectrum of 
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quarkonia can be described by a model having a finite number of bound 
states and simultaneously no continuous spectrum, in contrast to a 
Schr6dinger ansatz. 

Further investigations should be made of the spectrum of the 
quarkonia equation with other than a Coulomb potential and in solving 
the problem of which quarkonium equation can describe quarkonia, i.e., 
which potential and which mass scale and phase should be chosen. 
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